SIR epidemics in dynamic contact networks

نویسندگان

  • Erik Volz
  • Lauren Ancel Meyers
چکیده

Contact patterns in populations fundamentally influence the spread of infectious diseases. Current mathematical methods for epidemiological forecasting on networks largely assume that contacts between individuals are fixed, at least for the duration of an outbreak. In reality, contact patterns may be quite fluid, with individuals frequently making and breaking social or sexual relationships. Here we develop a mathematical approach to predicting disease transmission on dynamic networks in which each individual has a characteristic behavior (typical contact number), but the identities of their contacts change in time. We show that dynamic contact patterns shape epidemiological dynamics in ways that cannot be adequately captured in static network models or mass-action models. Our new model interpolates smoothly between static network models and mass-action models using a mixing parameter, thereby providing a bridge between disparate classes of epidemiological models. Using epidemiological and sexual contact data from an Atlanta high school, we then demonstrate the utility of this method for forecasting and controlling sexually transmitted disease outbreaks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bursts of Vertex Activation and Epidemics in Evolving Networks

The dynamic nature of contact patterns creates diverse temporal structures. In particular, empirical studies have shown that contact patterns follow heterogeneous inter-event time intervals, meaning that periods of high activity are followed by long periods of inactivity. To investigate the impact of these heterogeneities in the spread of infection from a theoretical perspective, we propose a s...

متن کامل

Epidemic thresholds in dynamic contact networks.

The reproductive ratio, R0, is a fundamental quantity in epidemiology, which determines the initial increase in an infectious disease in a susceptible host population. In most epidemic models, there is a specific value of R0, the epidemic threshold, above which epidemics are possible, but below which epidemics cannot occur. As the complexity of an epidemic model increases, so too does the diffi...

متن کامل

Extinction Times of Epidemic Outbreaks in Networks

In the Susceptible-Infectious-Recovered (SIR) model of disease spreading, the time to extinction of the epidemics happens at an intermediate value of the per-contact transmission probability. Too contagious infections burn out fast in the population. Infections that are not contagious enough die out before they spread to a large fraction of people. We characterize how the maximal extinction tim...

متن کامل

Mitigation of epidemics in contact networks through optimal contact adaptation.

This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact redu...

متن کامل

Exact Equations for SIR Epidemics on Tree Graphs

We consider Markovian susceptible-infectious-removed (SIR) dynamics on time-invariant weighted contact networks where the infection and removal processes are Poisson and where network links may be directed or undirected. We prove that a particular pair-based moment closure representation generates the expected infectious time series for networks with no cycles in the underlying graph. Moreover,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007